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We consider the nonlinear system of equations built up from a
generalized Boussinesq equation coupled with a wave equation
which is a model for the one-dimensional dynamics of phases in
martensitic alloys. The strongly implicit scheme employing New-
ton’'s quasilinearisation allows us to track the long time evolution
of the localized solutions of the system. Two distinct classes of
salutions are encountered for the pure Boussinesq equation. The
first class consists of oscillatory pulses whose envelopes are local-
ized waves. The second class consists of smoother solutions whose
shapes are either heteroclinic (kinks) or homoclinic {bumps). The
homoclinics decrease in amplitude with time while their support
increases. An appropriate self-similar scaling is found analytically
and confirmed by the direct numerical simulations to high accuracy.
The rich phenomenology resulting from the coupling with the wave
equation is also investigated. © 1995 Academic Press, Inc.

L. INTRODUCTION

In recent years marked interest has developed among metal-
lurgists, applied physicists, and mathematicians in the continu-
ous or discrete study of changes in the structure of martensitic
alloys and ferroelastic materials, In the discrete description that
captures our attention in the present research, we note the works
f1, 2, 3] which consider initially a lattice dynamics approach
in one space dimension accounting either for the principal
shear deformation alone [1] or for both shear and longitudinal
deformations [3], although the latter plays a secondary role
only. Further works [4, 5] account in a more satisfactory way
for the material symmetry typical of the phases of these materi-
als and various types of interparticle interactions. However,
here we shall content ourselves with the model of [3] which,
though less elaborate, seems to present an extremely rich dy-
namical behaviour,

Contrary to common models of nonlinear crystals with weak
nonlocal interactions in which the classical Boussinesq equation
for longitudinal elastic displacement appears to play a funda-
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mental role ([6, pp. 5-6]), in the present case the system re-
sulting from the continuum limit couples a modified Boussinesq
equation for a shear struin t0 a linear wave equation for a
longitudinal one. The complete system is conveniently referred
10 as a generalized Boussinesq system. The ‘‘modified’’ feature
comes from the higher order nonlinearity needed to reproduce
the typical ferroelastic behaviour. This obviously will be re-
sponsible for the original features to be exhibited below. These
equations were shown in [3] to possess solitary wave selutions
of various types that are supposed to represent several of the
structures existing in real materials {solitons on austesnite and
on martenite, Kinks between martensitic twins). The conditions
of existence of these solitary waves in terms of material parame-
ters and their amplitude were established. Obviously, the true (in
the mathematical sense) selitonic behaviour of these solutions
could not be proved due to the very structure of the system
considered here: high nonlinearity, coupling to a wave equation
tantamount to producing radiation, In the present work (of
which elements were briefly discussed in [7] for the case without
coupling), we focus on the dynamical behaviour of the primary
discrete system, and more particularly on the long-time evolu-
tion of traveling localized solutions developing from sharp
initial data. The said problem may appear of somewhat limited
significance in the original physical background as far as appli-
cations are concemed. The impact of this kind of investigation,
however, can have a bearing also for different nonlinear equa-
tions of evolution.

To conduct calculations for extended times one needs a
strongly implicit scheme which is stable for sufficiently large
time increments. The present paper deals with devising such a
scheme. In fact, the scheme proposed here is fully implicit as
far as Newton’s guasilinearization of the nonlinear terms
is employed. The second time derivatives are approximated
with second order over four time stages. The system 1s
rendered into multidiagonal form and a specialized solver for
Gaussian elimination with pivoting is used which makes the
algorithm very efficient and allows us to go to very long
times, indeed, with as many as 20,000 points of spatial resolu-
tion, :
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II. POSING THE PROBLEM

Following [1, 2, 3] we consider the one-dimensional model
of an atomic chain in which the longitudinal displacements x,
couple to the shear strain. Denoting the transverse displacement
by y,, the Lagrangian adopts the following form (see {3] for de-
tails).
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The variables can be rendered dimensionless according to
the scheme

B _ B h= [B
L‘—CQQ, T= mct’ (In)f)—\/;(unvf)v (2.2)

Upon introducing the relative displacements

S =Uyw — U, T =wn — o, (2.3)
the Euler-Lagrange equations resulting from the variation of
(2.1) read

Si =381 — 285+ Sy — 8k — 253+ SLY)
+ (S?+I - ZS? + S?—l)
o .B(SHZ - 4Sa'+l + 65 — 48, + Si*f!) (2-4)
+ (8% — 287 + S0 — 29(Si T — 28T+ S Tiy)
= B(Sis2 — 4Si + 65, — 45 + 5.0,

Ty = cH(Tis — 2T, + Tiop) — ¥Sh, — 257 + S2)), (2.5)
where
AC EC DC F|C
c%=-§5, Ci:?’ B=?, ')’=E\/';- (2.6)

As it is shown in [3] the continuum limit of system (2.4},
(2.5) is

Se=ctSu— (8 + (8%)g — aSge — ¥v(ST)y,  (2.7)

T, = il — y($e (2.8)

In the above system the independent space variable is defined
as £ = X/a (where «a is the distance between the atoms), X, =
na, and o = B — 1 acknowledges the contribution to the
fourth derivative from the respective terms of the approximation

of the three-point difference (5., — 28, + §,_,). Here we men-
tion that in terms of the longitudinal variable § which is scaled
by the distance ¢, one is to keep also the higher order derivatives
(sixth, eighth, etc.) in order to be consistent, Unfortunately, the
resulting differential system then becomes too complicated to
be tractable numerically in a feasible way. For this reason we
consider in what follows either the original difference form of
the system (2.4}, (2.5) or a continuum limit in which the coeffi-
cient before the fourth derivative is simply 3. The differential
form, however, hints at the name ‘‘generalized Boussinesg
system’” for the system because (2.7) is a generalized Bous-
sinesq equation in the sense of more complicated nonlinearities
than the original Boussinesq equation [8].

The continuum limit can provide also the clue to how the
boundary conditions are to be posed. Let us denote by & and &
the left and right boundaries of the interval under consideration,
respectively. Let us consider also the physically most typical
situation when the boundary points are held fixed, namely the
transverse and longitudinal strains are equal to zero:

§=T=10 for £ = &, &. 2.9
For the discrete version of the system these boundary conditions
are simply as follows
S] = SN = .T] = TN = 0, (2.10)
where the index ‘‘1”" refers to the first atom in the chain and
““A"7 to the last one, respectively.

For the transverse strain S one needs one more condition at
each boundary point. The most natural condition for a strain
in higher grade elasticity is

S =0 for &= &. &, (2.11)
and for the proper discretization of the latter we introduce
into consideration two *‘artificial”’ members of the chain with
indices ‘0" and ““N + 1,”” respectively. Then we have

S() - 251 + Sz = 0, SN—1 - ZSN + SN+| = (. (212)
It is clear that the very equations (2.4), {2.5) can be satisfied
only at the internal points of the interval under consideration.

Before proceeding further it is important to discuss another
type of boundary condition which stems from the natural bound-
ary condition for the functional in differential form, namely

d s_pdt ) -
%(—S3+S Bdfzs) 0 foré= &, 8. (2.13)

The last condition is in a sense more desirable because when
it is satisfied we get the following Newton law for the motion:
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4 j % S(& ndE = 0. (2.14)

drle,

Condition (2.13) is especially important when the interaction
of the structures with the boundaries is investigated since it
does not contribute to the total momentum of the system. We
shall concern ourselves with this problem elsewhere. In the
present paper we focus our attention only on localized solutions
for which each of the conditions, (2.11) or (2.13), yields the
other one under the provision of (2.9) due to the fact that
they are asymptotic conditions imposed at infinity. We actually
conducted calculations with each of the conditions, and as far
as the localized solutions are concemed, we did not find a
significant difference between the results.
It is interesting to note that (2.14) can provide for a conserva-
tion of the mass of a coherent structure (if any develops),
miny= [ 0 s, (2.15)
if the time derivative of the latter is set equal to zero at the initial
moment of time. A sufficient condition for this is to require

d
—S5'=0. 2.1
et 0 (2.16)
Then the conservation law reads
+ o
m(r) = const. = m® = f_w S (x; 0)dx. (2.17)

It is clear that depending on the magnitude of the derivative
(2.16) of the initial condition one can have either a solution
with linearly increasing or linearly decreasing mass or, which
is the same, increasing or decreasing amplitude. The full class
of localized solutions to our generalized Boussinesq system is
so wide that we should confine ourselves to certain subclasses
for the time being. For this reason we shall consider in what
follows only sclutions for which (2.16) holds.

For the successful numerical treatment of the problem of
localized solutions (henceforth we call them ‘‘coherent struc-
tures’’) one has to consider a sufficiently large interval and
hence to employ a large number of “‘grid points’ N in order
to allow enough place for the structures to move without strong
interactions with other structures or with the boundaries. The
second major requirement is for the temporal stability of the
algorithm in the sense that the different kinds of computational
errors (round-off, truncation, etc.) do not amplify timewise.
The last requirement is crucial because some of the properties
of the individualized localized solution can be recognized only
after very long temporal evolution.

II1. DIFFERENCE SCHEME AND ALGORITHM

As far as the properties of the linear system to be solved are
concerned, it is better to reduce the order of the original system

even at the expense of increasing the size of the system. As
paradoxical as it may sound, the latter is especially important
when systems with a very large number of equations are consid-
ered. This is due to the fact that the spacing £ is proportional
to the inverse of the size and the matrix of a system of fourth
order with respect to the spatial derivatives has a determinant
of order of A*. Following this line of reasoning we introduce
the auxiliary function

Q,=ci§; — S+ S - 2y8T — B8, — 285 + 8,41,
i= 1., N—1, G.1

and recast (2.4) into the form

dZ

@Si =00~ 20+ G, i=2,.,N—1 (32)
Equation (2.5} remains unchanged,
d4?
Ti=ci(T, - 2T+ Ty) — ?(S%—l - 281+ Sh). (33)

dr

In terms of the set function @;, the boundary conditions adopt
the simple form

51=8=0, @=0y=0, T =Ty=0. (34

If one is to implement the boundary condition (2.16) then

in terms of the function @; the latter adopts the following
simple form:

Q=0 and On = On-1 (3.5)

It is obvious that initial conditions are to be imposed only
for functions §; and 7. Insofar as Egs. (3.1) and (3.3) are of
second order with respect to time, one needs two initial condi-

tions for each of these functions, namely

I )
$5:0) =8, 7 S0y = S, (3.6)
A d ~
T(0) =T, 5 [0 = T. 3.7

In order to approximate the initial conditions to second order
with respect to time we employ a staggered time mesh

= (1)
n 2 1

where T is the time increment. Introducing the superscript 7 to
denote the current time step we derive from (3.6), (3.7) the
expressions for the first two time stages # = 0, 1; namely,

(3.8)
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S, St=8§+-:8, (3.9)

S RRS]

. T!'= ﬁ+§fz. (3.10)

The main objective in devising the algorithm is to have a
stable scheme that would allow us to march with large time
increments 7. For this reason we chose a fully implicit scheme.
Atthe time step n + 1 we use a consistent Newton’s quasilinear-
ization of the terms on the right-hand side of (3.2) and (3.3)
according to the formulae:

S = 38ESE = 287 + O, (3.11a)

it = 5SS — 457 + O, (3.11b)
ST = ST+ + §7977 — SIT7 4+ O(1%),  (3.11¢)
St = 28581t = S1 + O(72). (3.11d)

The strongly implicit scheme requires also that the time
derivatives of (3.2) and (3.3) also be approximated at time step
(n + 1). At the first step after the two steps of the initial
conditions, namely at the step numbered 2, one can have only
a first-order approximation of the second derivatives over
three steps:

1

S;,-=?[SE—ZS}+S?]+O(T), (3.12a)

T, = ;13 [T?—2T! + T + O(7). (3.13a)

At the consecutive time steps (r > 2) we employ a four-
step scheme with second-order approximation as follows:

1

Si= 51251 — 551+ 457 — S + O(r)  (3.12b)
T

.1
h=3 [277 — ST? + 4T — T2 + O(r%).  (3.13b)

Introducing the above formulas into (3.1)—(3.3), we ar-
rive at the following coupled system of difference equations
for the three unknown set functions §7', T7*', and Qr;
namely,

BSE — 28 + ¢t — 387 + 587 — 2yTo18™ + GBS

_ sl P T vy (3.14a)
Q! + 298I 287 — 45T + 2yS8IT,

0t =207 + 0t — S = L (=ssr + asp - s,
T T
(3.14b)

Ty - (2ci ' %) TI AT 28T ST
+ 4ySisi
— ySLASI = 5 (<STI+ 4T = T (140)

2

— (ST, — 287 + ST

Here the set functions of steps n, n — 1, and n — 2 are
thought of as known. Equations (3.14) are valid for all interior
points i = 2, ..., N — | and are coupled through the boundary
conditions (3.4) or (3.5).

The most important feature of the system (3.4), (3.14) is
that, upon introducing the composite set function

Wy = Q0 Wy, = ST Wy =T, i=1,.,N (3.15)

and after fairly obvious manipulations, the said system can be
recast as a seven-diagonal system for the new set function W,
where 1 = k = 3N. The band structure allows us to use highly
efficient specialized solvers, e.g., the one developed in [9].

As far as we are concerned, with the localized solutions of
the generalized Boussinesq system we are free to shift the
independent spatial variable. This is especially important when
the evolution of a structure is tracked in the moving frame. So
we set the origin of the coordinate system at the point | =
N;. When the structure considered is symmetric {even or odd
function of the spatial coordinate) then it is obvious that the
best choice is N; = [N/2] + 1. In each particular case the value
of N; is to be selected according to the shape of the structure
in order to reduce the unnecessary calculations in that portion
of the interval where the structure is virtually decayed to zero.

As we have already mentioned, the structure propagates and
its “‘center of mass’’ leaves eventually the center of the coordi-
nate system. For this reason at each time step (or after a given
number of time steps, depending on the celerity with which
the structure escapes the origin of the coordinate system) we
calculate the actual coordinate of the center of the structure
according to the formula

J " xS 1) dx
x =1 . (3.16)
j_w | S 1| dx

As one can see, the last formula is similar to the usual definition
of the center of mass of a solitary wave save for the fact that
we use the absolute value of the shape. It is because of this
fact that, numerically, we are able to represent equally well
both the positive and the negative parts of the shape of the
solitary wave. Proceeding along these lines we calculate the
new value for the index, refering to the origin of the coordinate
system as
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G.17)

where £ is the spacing. After that, according to (3.17) the
solution is shifted in a manner to get the center of the structure
once again at point N,. This means that the value of § at point
I = Ny should be shifted to the point i = N, and all of the
remaining values accordingly. As far as localized solutions are
concerned the points which remain ‘‘void’’ after the shifting
are filled with zeros (for bump shapes) or with a given constant
(for kink shapes).

To trace the evolution of a particular coherent structure one
needs the flexibility to play with the scheme parameters: spac-
ing, time increment, mesh size, actual infinity, etc. For this
reason the algorithm is organized to allow one to continue from
a given time stage (let us call it the *‘break point’’), taking the
result of previous calculations as an initial condition. A built-
in feature of the algorithm is that during these ‘“‘breaks’” in
the calculations one can proceed with different sets of mesh
parameters. This is made possible by a procedure of spline
interpolation (see [10] for details and Fortran code).

The general outline of the algorithm is as follows.

(i) The parameters for the particular run are selected and
an initial condition is chosen. The computations are run without
effecting the shifting procedure until a satisfactory distinguish-
able individual shape is formed. Then the current result is saved
as disk file.

(ii) The portion of the solution whose evolution is to be
traced is “‘cut off”’ from the rest and rendered in a form of
initial condition. The shifting procedure is effected and the
mesh parameters are adjusted if necessary. Calculations are
conducted until the next break point.

(iii) At the break point the shape of the coherent structure
is examined. In case it has expanded and its forerunner or its
tail becomes very close to the boundaries of the computational
domain an additional number of mesh points is added or some
other means to enlarge the computational interval are enforced.
Then the calculations are conducted until the next break point.

(iv) Step (iii) is repeated as many times as necessary
in order to gather the physically relevant information of the
evolution of the structure, and when this information is com-
pleted the procedure is terminated.

It is to be mentioned that if the computational boundaries
are kept far enough away (see step (iii) for details) then it is
not important what kinds of boundary conditions are imposed:
both kinds of conditions (on the first derivative of ¢ or on the
second derivative of §) discussed in the previous section will
do if the shape is fairly decayed in the vicinity of the boundary
points. This has been unequivecally confirmed by the computa-
tions.

IV. RESULTS FOR THE SOLE BOUSSINESQ EQUATION

In this section we examine the properties of our scheme for
the case when the coupling is absent, i.e., y = 0. We set ¢, =
£, B = L. It is easily seen that the particular values of these
parameters are not as important and by selecting the value of
the time increment 7 we can derive most of the principal cases
by means of simply rescaling the dependent and independent
variables. It is stressed that, due to the strong implicitness, the
scheme turns out to be stable for a wide range of time incre-
ments, 1078 < 7 < 105, and for a wide range of amplitudes of
initial conditions. Tt is obvious that the computations with larger
7’5 led us to the smoother solutions spreading wider in the
region under consideration.

As it has been already mentioned, we examine here only the
case when the initial value for the derivative is equal to zero.
Then the only freedom rests in the choice of the initial condition
for the function S (for the case with coupling we define also
the initial condition for function T). It is interesting to note
that the particular shape of the initial condition does not matter
much as far as the long-time evolution of coherent structures
is concerned. Aftera ‘‘violent’” behaviour of the solution during
the first couple of time steps it eventually splits into two signals
propagating in opposite directions with speed close to c. The
most surprising observation is that when the initial condition
is not symmetric then we still get two fairly similar signals
but they appear to have sprung from a common origin of the
coordinate system that does not coincide with the actual one.
The position of this apparent origin is shifted from the real one
in the direction where the amplitude of the initial condition
was smaller. The initial condition is of crucial importance when
the short-time evolution is of concern and especially when the
boundaries of the region of consideration are not very far away.
In our case they are far enough (the ‘‘actual infinity’’) and
during the initial violent splitting of the solution into two shapes
the interaction with the boundaries is negligible.

For the purposes of the exposition to follow it is enough to
think of the imitial condition in terms of a *‘difference delia
function™: a triangle of height C;; spanning 10 points on each
side of the origin of the coordinate system. In other words, the
important parameter of the initial condition is its mass
mt = 10hC.

Only the smooth solutions appeared in our calculations when
the time increment 7 was larger than 5 regardless of the ampli-
tude {mass) of the nitial condition. It goes without saying that
we did verify whether the same shape of coherent structure is
obtained if the calculations are conducted with different 2>
5(say T = 10 and 7 = 100) and different values for the
other mesh parameters, respectively. We discovered that what
mattered was the interplay between the time increment and the
amplitude of the initial condition. When the amplitude of the
initial condition is *‘moderate’’ in comparison with  then
coherent structures with the shape of Airy functions appeared
as shown in Fig. 1. Tt is seen that they are homoclinics, When
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FIG. 1. Evolution with time of homoclinics of Airy-function shape: « - -,
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the amplitade 1s small relative to 7 the pentic nonlinearity is
switched off even on the earliest stages, and then the symmetric
homoclinics shown in Fig. 2 appeared and developed steadily
with time. If the amplitude was large enough, then the balance
between the two nonlinear terms yielded the kink shape (hetero-
clinics) for the coherent structure shown in Fig. 3. Just in order
to illustrate the general consequence of the computations we
show in Fig. 3a the development of the initial disturbance before
we cut it, say the portion of the solution to the right, and traced
its evolution in the moving frame.

An interesting feature of the homoclinics is that their shape
is not preserved timewise while the heteroclinics (kinks) are
stationary patterns. The homoclinics appeared to be a kind of
“‘big-bang’ solution that decreased in amplitude with time
while their support increased, and, after a sufficient number of
time steps, the solution eventually gets on the self-similar track
discussed in the next section.

A completely different universe appeared when the time
increments were small enough (say 7 <2 1 for 8 = 1) in order
to allow development of more complicated *‘“wiggled’’ shapes.
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—— {=400000
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s S5.0E-005
D.054000
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X

FIG. 2. Evolution with time of the homoclinics of “‘bump” shape: + - -,
=50 X0 -, =8 X 105 ~—— 1t =2 X 10% — =3 X 10% ——,
r=4x10.
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FIG. 3. The kink solution: (a) the shape of the signal at small times; (b)
the shape of the kink at large times.

It is more convenient to consider the case 7 = 0.1, 8 = 0.0!
since then the spatial span of a structure is smaller. In the
sequence in Fig. 4 one sees the development of a “‘pulse’ that
has smooth shape in the right-hand side of the interval. In the
course of time it spans larger portions of the left-hand side of
the interval with its wavy “‘tail.”” For the time being we have
not examined whether the envelope of the “‘pulse’ exhibits
some kind of self-similar behaviour as is the case with the
smooth sclutions.

It is mentioned here that even for small 7 the large amplitudes
of the initial condition led us to the kinks of Fig. 3. The complete
and thorough classification and taxonomy of the different crea-
tures inhabiting the generalized Boussinesq systems goes far
beyond the scope of the present paper (which is in fact only a
venture into the wild life of one of the generalized Boussinesq
systems}. A more systematic account is due elsewhere.

V. THE SELF SIMILAR STAGE

The results of the previous section suggest that for large
times some of the solutions tend to adopt a self-similar shape
in the sense that their amplitude decreases with time while the
length scale of the support increases. It is instructive to check
whether this is an artifact of the difference scheme (due to
nonconservativeness or other shortcomings) or it is an intrinsic
property of the system under consideration. Let us seek a trans-
formation of the following type:

1 1 — ¢t
S(x;:):;s(n),T(x;r)=t2—ﬂe(n),n=x = a8>0

(5.1)

It is clear that for a decaying solution of the type of (5.1), for
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TABLE 1

Self-Similar Behavior of Homoclinics of Airy-Function Shape: &, = 2.76 X 1%, a = 1.011; b = 63.3

Time Amplitude Approximation % Support Approximation %

0 0.033063 0.033445 1.1428 1866 19139 2.503
20000 0.027840 0.027894 0.1936 2281 22948 0.601
40000 0.024881 0.024818 0(.2550 2587 25792 0.301
60000 0.022767 0.022765 0.0106 2804 28119 0.279
80000 0.021263 0.021257 0.0378 3002 30113 0.308

100000 0.020095 0.020083 0.0597 3183 31873 0.315
120000 0.019139 0.019132 0.0377 3343 3345.8 0.083
140000 0.018337 0.018338 0.0082 3492 3490.5 0.042
160000 0.017638 0.017662 0.0244 3632 3624.1 0.217
180000 0.017066 0.017076 0.0583 3763 3748.6 0.384
200000 0.016541 0.016560 0.1173 3884 3865.3 0.484

large times we will have §° < §°, so the pentic power is
negiected in comparison with the third one. The power law 1~
for function T'is obviously related to 1~ because of the specific
form of Eqs. {2.7), (2.8). Then, introducing (5.1) into the said
equations, we arrive at

ala+ 1)s+ 26 +2a

,(Z_C%r+38+lﬂ)

et 1o+l t? 2 ¢
s (20%,1‘fﬂa + fzf) (5.22)
= ;5;155 ()" + 2y ﬁ%ﬂa (s8)" — %S’”ﬁ
oo+ 1) | 26+2 (2_6% 38+lﬂ)
rrt? flet t? 2t
+ 5" (20% t'%?ﬁ + %) (5.2b)
=y 1271“—5 (s?".

Here primes stand for differentiation with respect to the similarity
variable 7.

The only way to keep the significance of the nonlinear terms
at large times is to set 3¢ + 26 = o + 44, ie,, « = & Then
the requirement of not having secular terms gives

5.3)

=§5=-
o 3

and the final form of the equations for the scaled functions s
and @ is

[SSR RS

cids’ + ") = — (5% + 29(s8)" — Bs™,  (5.4a)

%ci 48 + 08" = y(s?". (5.4b)

It is interesting to note that such a self-similar solution can be
found both for Burgers’ equation [11] and for Korteweg—de
Vries' equation [6].

It goes beyond the frame of the present work to attempt a
direct solution to (5.4). Rather we shall check whether the time
dependent solution of the previous section conforms with the
asymptotic law (5.1), {(5.2). Let us confine ourselves, for the
sake of simplicity, to the case without coupling, y = 0. Let us

TABLE 2
Self-Similar Behavior of Homeoclinics of Second Kind (“*Bumps™ ). f, = 7.175 X 10% @ = 0.0717; b = 1473

Time Amplitude Approximation %o Support Approximation %
51000 0.0001459] 0.00014500 0.633 83 86.23 3.750
70500 0.00013694 ¢.00013783 0.645 90 90.72 0.791
S0000 0.00013056 0.00013212 1.179 95 94.64 0.380
150000 0.00011738 0.00011882 1.121 106 105.23 0.732
200000 0.00011032 0.00011099 0.600 "3 112.66 0.303
250000 0.00010504 0.00010488 0.154 120 119.22 0.655
300000 0.00010086 0.000099926 0.935 125 12513 0.102
400000 0.000094521 0.000092270 2.440 134 135.51 1.115
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FIG.5. Comparison of homoclinics of Airy-function shape for times from
40,000 to 200,000 after rescaling according to the self-similar taw.

also define the length of support L, as the distance from the
point where the maximum of the structure is situated to the point
where the amplitude is 1/100 of the maximum. The definition
is appropriate for all of the structures which decay in the right
portion of the region under consideration (e.g., those depicted
in Figs. 1 and 2). In Tables I, I we present the amplitude
and the measure of the support of the solution as functions of
dimensionless time starting from a certain moment of time. Next
to the column of numerical results we also present in those tables
the approximation for A and L, of the type

a

A= ([Tt)_ﬁ’ L= b(f + h))m,
Q

(5.5)

where the constants «, b, and #, are defined to provide a best
fit, in the least-squares sense, to observations from numerical
simulations. Here it is to be specially emphasized that the least-
square functional is comprised by borh formulas (5.5); i.e., the
*‘imaginary’’ moment of time —, is common to both formulas.
Taking different o’s in the two different formulas (5.5) one can
even further improve the agreement, but this does not have any
physical meaning, So, upon setting x = * and y = b~ we cast
the functional to be minimized in the form

time from 51000 to 400000

1.0
0.8
0.6 =

0.2
-0.0
-0.2 =

FIG. 6. Comparison of homoclinics of *‘bump’* shape for times from
51,000 to 400,000 after rescaling according to the self-similar law.
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r

1= 2 (A4 + ) — x)2 + (L%t + 1) — y] = min, (5.6)
k=1

where K| is the total number of different time stages. It is easily
seen that the problem of minimization of (5.6) reduces to solving
a linear system for the three unknowns x, y, and &, provided that
the respective sets of values for the amplitude and support are
known. After the coefficients of the asymptotic law (5.5) are
calculated one can “‘predict’” the amplitude A and the support
I, and compare them to the original values in order to assess
the applicahility of the notion of self-similarity. This is done in
Table 1 for the case of coherent structures of Airy-function shape.
It is clearly seen that the asymptotic self-similar predictions for
the amplitude A and support L, are in excellent agreement with
the observed data, the difference being less than 1% save for
the moment # = O which in fact is ‘‘too early a moment”’ from
the point of view of the asymptotic stage. The same comparison
is presented in Table 11 but for the second kind of homoclinics
(“‘bumps’). Although on the average the deviation here is
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FIG. 8. Evolution of the coupled system for moderate starting mass
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slightly larger than in the previous case, one can safely conclude
that here the coherence to self-similar law is also satisfactory
since the time interval is two times larger.

In Fig. 5 are shown the rescaled results for the shape of the
coherent structure. One sees that the similarity is beyond any
doubt. The same holds for the second kind of homoclinic solu-
tions in Fig. 6. This means that the expanding self-similar solu-
tions (so-called ‘‘big-bang’” solutions) are an innate characteris-
tic feature of generalized Boussinesq systems.

VI. RESULTS FOR THE COUPLED SYSTEM

As one can see from the previous sections the set of solutions
of the generalized Boussinesq equation under consideration
includes various different types. Its phenomenology becomes
much richer when the coupling to the wave equation is acknowl-
edged. We restrict ourselves to the case y = 1.0 but it can be

shown that by means of varying the iime increment 7 and
rescaling the variables one can capture the main classes of
behaviour of the system.

Three principal cases can be considered. The first one is when
the system is excited through an initial impulse for function §
and zero condition on T; the second one is the reversed situation
(nontrivial initial condition for T and trivial for §); and the
third is when nontrivial initial conditions are imposed for both
functions. The coupling in the system under consideration is
typical for interactions between the transverse and longitudinal
motions in the mechanics of continua, namely the square $? of
the transverse strain is the excitation term in the wave equation
for T while the product ST plays the same role in the Boussinesq
equation for S. It is obvious that if the function § is equal to
zero at the initial moment, it will remain the same no matter
how and to what degree we excite function 7. For this reason
the second case is of no interest in our study. Following the
same reasoning one can show that the third case is not much
different from the first one since the presence of a non-trivial
initial condition for T affects the system only to the extent
predetermined by the amplitude of the initial condition for S.
It is to be mentioned that the algorithm presented here allowed
us to impose completely different initial conditions for the two
functions, and it turned out that the initial condition for the
function 7 was important only for short initial times. Therefore,
only the results relating to the first case are reported in the
present section.

It is important to note that the physically encountered situa-
tion is when the speed ¢; of longitudinal disturbances is larger
than the speed crof transverse waves. The numerical experiment
in this case shows that very soon a structure for function T is
emitted from the main signal. This structure goes faster than
the main signal and eventually separates from it. Due to the
reasons discussed above the said structure does not disturb the
trivial value for function S. For this reason we consider the
resonant case ¢ = ¢, = 1 in order io have the structures
for both functions occupying the same place in the moving
coordinate system.

In Fig. 7 the evotution of the system is shown, starting from
an initial condition with large mass. The dotted lines refer to
the function S. As was already mentioned in Section IV the
initial condition of large enough mass yields kink shapes regard-
less of the value of the time increment. This is clearly seen in
the plots of Fig. 7 that the two structures escape from the origin
of the coordinate system. What is important for the present
section is the feedback to function 7. The small value for time
increment 7 = 0.01 is selected to allow development of high-
frequency signals. One sees that the role of the coupling here
is to give birth to an oscillatory but localized shape for function
T which expands slowly timewise.

In Fig. 8 the evolution of the system is traced, with the same
set of governing parameters but starting from an initial shape
of smaller mass. The oscillatory bound state in the origin of
the coordinate system is qualitatively the same as in the previous



LOCALIZED SOLUTIONS OF BOUSSINES(Q SYSTEM 49

time = 10 a)

S (dots); 5T
[w]
o
@

-600 —400 -2Z00 ) 200 400 500
time = 20 b)
5 0.08
e
§ o.00
n
_DOS lrrr'l‘ll”i"\iIIIIIlDl[[illllll11T1111||||i\FI(HII'II\EIIIWI]
—B600 —400 —200 s} 200 400 600
0.08 ine =
= time = 30 c)
T 000 —vjb—_g(f\“v;
3
w-o’oa \l|||!\\II[IIIIII[II|IIII!I|||||IIIiIIIIIIlIIllIIIrI'TI'Il'III'I_i
—800 —400 —200 0 200 400 8500
g 008 i time = 50 d)
£ 0.00 3
= 3
n _‘0.06 ~T[1||||II[IIIIIIWII]W}IIIII\i]]llllllll|!ll|i?|l]]mTl’[T]|
—600 -400 -200 200 400 600

time = 70 e)

o
o
a3

S {dots); ST
o
(=]
[&]

L % |

_005 T||||I|||||IIIIIIIIIIIJFlllllllil\f||||||||Ill||l|[||||F||r|
~-200 0 200 400 600 300 1000
0.05 time = 90 f)
[ b /\
¥ 000 3
3 1 v \/
n 7]
-0.05 T T T E T T T e T [T A T T T I T
-200 200 400 600 a00 1000
00s o  tme =110 g)
% 00 - /\
F 0.00 3 N\ <
5 E
3 ]
] ] \/
—0.05 T I O T T e T T T T T T M T
—200 0 200 400 600 800 1000
0.05 - time = 130 h)
B b /\
% 0.00 3 Q{A
] ] J \/
n ]
*0,05 ||||Tr‘ﬂT(]l]ll‘|l[iT|||||||[17TT|ll|||||J||1|||||11[|[||l|
—-200 9] 200 400 600 BCC 1000

FIG. 9. Evolution of the coupled system for moderate starting mass m” = 2.0 and large time increment 7 = 0, k=2, 8= l,cr=¢, = Lz (@)t = 1ty
(byt =20, (c) r = 30; (d} r = 50y (e) + = 70, () r = 90; {(g) ¢+ = 110; (h) r = 130

figure. The only difference is that two “‘bumps’’ rather than
kinks are escaping with the speed close to cr.

In both Fig. 7 and Fig. 8 one can see the coupling in the
smooth part of the solution (the kinks or bumps). Regarding
the smooth solutions it is interesting to start the calculations
with larger time increments in order to filter the oscillatory part
from the very beginning and to have an unobscured picture of
the evolution of the smooth solutions. The related results are
presented in Figs. 9 and 10 for two different initial masses.
The development of a structure of Airy-function shape is clearly
seen. The said structure is “*kept’” in the origin of the coordinate
system. What is interesting is that the overall speed of propaga-
tion of the structure is somewhat smaller than unity. This is
due to the fact that the nonlinear terms contribute to some
apparent celerity of the waves which causes the deviation from
the linear celerity defined by cr. That is the reason why one
observes some signals for function T escaping the main signal
with higher celerity. This signal is formed by part of the initial
energy. Since it does not excite the function §, the effects of
the nonlinearity on its celerity are not felt. As a result it is

moving with phase speed equal to unity. In fact, it is the linear
evolution of a structure of the wave equation. Although it is
not very pronounced in Figs. 9 and 10, the apparent celerity is
slightly different for the two cases shown there because it
generally depends on the amplitude of solution, and the two
amplitudes are different. So, referring to the main signal for
which the coupling is significant, one can say that both functions
S and T are of the shape of Airy function but their phases are
shifted and their supports are different.

Finally, we present results for a set of parameters for which
the interaction is especially strong. In this case the resonance
proves to be more significant and for this reason we start in
Fig. 11 with the non-resonant case ¢y = 1, ¢, = 0.9. Although
it has little physical significance in the context of elasticity, we
took the second phase speed smaller for the simple reason
discussed above, namely to keep the structures for both func-
tions in the same region. One should be aware that the actual
magnitude of the function T is 10 times larger, and it is scaled
in order to juxtapose it to the other function in the same figure.
The feedback now is indeed mutual and one can see that the
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two escaping structures of kink-like shape develop a wave
forerunner which was not observed in the cases without cou-
pling. On the other hand, the bound state around the origin of
the coordinate system becomes more complicated with sharp
peaks. The described behaviour of the system is grossly exag-
gerated by the resonance (see Fig. 12). One can think now of
a stochastic shape of the signals. The last statement is applicable
only in one of the halves of the interval. Otherwise, the signals
are strictly (up to about four significant digits) symmetric with
respect to the origin. The latter is one more validation of the
algorithm discussed, bearing in mind that the calculations pre-
sented in the last two figures are conducted with 10,000 grid
points,

VII. CONCLUDING REMARKS

The fully implicit difference scheme developed in the present
work allowed us to follow the evolution of the localized solu-
tions of a generalized Boussinesq system for very long times.
Even this apparently narrow subclass of solutions appeared to

be very rich, containing two types of homoclinics, heteroclinics,
and pulses. The efficiency of the algorithm has been instrumen-
tal in discovering that the homoclinic solutions scale with the
cubic root of time. The adherence of the numerical solutions
to the self-similarity law is confirmed within fractions of the
percent. Finally, the rich phenomenology of couplings is ex-
plored for different values of the governing parameters.

ACKNOWLEDGMENTS

The first author acknowledges a fellowship from the French Ministry of
Research and Technology and partial support from Grant 1052 of the Bulgarian
Ministry of Science and Higher Education.

REFERENCES

1. J. Pouget, in Physical Properties and Thermodynamical Behaviour of
Minerals, edited by E. K. Salje, (Riedel, Dordrecht, 1988), pp. 359-401.

2. G. A. Maugin, in Non-Clussical Continuum Mechanics, edited by R. J.
Knops and A. A. Lacey, (Cambridge Univ. Press, Cambridge, 1987), pp.
272-283



LOCALIZED SOLUTIONS OF BOUSSINESQ SYSTEM 51

= 3 time = 10 a)

i

5 -0

2

U'l_3|Ii|ll||lI|IIIHIIII|T'HIIIIH|I
A150 —100 750 0IIIIHI‘SBII”“I1I[|)I0””I”1I‘|]50
3o time = 30

.

e} b)

% -0

[=]

hct
T

v T ‘IIH\Hll]TTIIlIIPI|I(II!IIIl||llIlIIII]IllTTTlII[\IIIITrl_I_I
~150  -100  ~30 0 50 100 150

time = 50

- 3

E 33 c

o 3 )

T 0T

2 3

m_3 ll]llllll|lll|('|'|II|Hflllll\gllllllllliiIIIIIIl||IIIPIIlII|
-150 —100 -50 0 50 100 150

£ 3 time =100 d)

[+]

A9

g

U)_3jIllllllTI[II'i'Ill]Il["l_l'llillll|illlll1_l_V_|
—500 -250 o 250 500

£ 33 tme =200 e)

; | .

F-0 -

3 U

v__v

W -l|I‘ll?l'i‘l|I||IIiIIl;\FI|II[|L|II\'IIIIII|
-500 -250 0 250 500

FIG. 11.  Evolution of the coupled system when significant interaction is
observed (non-resonant case) m® = 25, 7=01, k=05 8=1,¢, = 1,

Cr

P

[= AN ]

=09: (@)1 = 10; (b) r = 30; (c¢) r = 50; (d) r = 100; (e} r = 200.

. G. A. Maugin and 8. Cadet, Int. J. Engng. Sci. 29, 243 (1991).

. 1. Pouget, in Confinuum Models and Discrete Systems, edited by G. A.
Maugin, (Longman, London, 1990), Vol. 1, pp. 296-312.

. J. Pouget, Phys. Rev. B 43, 3575 (1991).

. A. C. Newell, Solitons in Mathematics and Physics (SIAM, Philadel-
phia, 1985).

. I. Sander and K. Hutter, Acta Mechanica 86, 111 (1991).

. C. 1. Christov and G. A. Maugin, in Proc. 7th Interdisciplinary Workshop
“‘Nonlinear Coherent Structures in Physics and Biology,'” edited by M.

e 3 time = 10 a)
5
&0
g
u‘l_3||ILIIII\i||li\kllll||l\IIIlIIiiltl||l||]'l|||llll||liI|IIH|]
-150  -108  -50 D 50 160 150
time = 30

3 b)

S (dots); C.IT
|
(=]

-3
-150 100  -50 0 50 100 150
time = 50

= 33 c)

CE

3 3

m_3—Ii\II|I<\|IIIIiI||||l|l\\tlll]llllHiII|IIISIIIl||'I||||'|||||
-150  -i00  -50 0 50 f00 150

=3 time =100 d)

o

-0 B AT

g

Lﬂ*3|IF1IJ}III\|l|'||li|||ll\llllll[]llill'l_l_[j
-500 —250 0 250 500

£ 3 time =200 e)

3

7 -0 A & ot

2

_—

[74] Ll|iiIi\]III\|l|||IIlI|II1FIIlIILIII\III\I—|
-500 -250 0 250 500

FIG. 12. Evolution of the coupled system when significant interaction is
observed (resonant case} m° = 25, 7= 0L A =05 8=l cr=c = I:
(@ r=10;(b) 1t = 20; (c) 1t = 50; {d) ¢+ = 100}, (e) t = 200.

Peyrad and M. Remoissenet {Springer, New York/Berlin, 1991}, pp.
209-216.

9. C. I Christov, Gaussian elimination with pivoting for multi-diagonal sys-
tems Internal Report, University of Reading, No. 4, (1994).

10. G. E. Forsyth, M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations (Prentice—Hall, Englewood Cliffs, NJ, 1977},

11. C. L Christov, Bulg. Acad. Sci., Theor. Appl. Mech. 11, 59 (1980} [in
Russian]; see also in Continuum Models and Discrete Systems edited by
G. A. Maugin, {Longman, London, 1990), Vol. 1, pp. 232-253.



